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Rotation Moment Invariants for Recognition
of Symmetric Objects

Jan Flusser, Senior Member, IEEE, and Tomáš Suk

Abstract—In this paper, a new set of moment invariants with re-
spect to rotation, translation, and scaling suitable for recognition of
objects having -fold rotation symmetry are presented. Moment
invariants described earlier cannot be used for this purpose be-
cause most moments of symmetric objects vanish. The invariants
proposed here are based on complex moments. Their independence
and completeness are proven theoretically and their performance
is demonstrated by experiments.

Index Terms—Complex moments, moment invariants, -fold
rotation symmetry, symmetric objects.

I. INTRODUCTION

MOMENT invariants have become a classical tool for ob-
ject recognition during last 40 years. No doubt they are

one of the most important and most frequently used shape de-
scriptors. Even if they suffer from some intrinsic limitations (the
most important of which is their globality, which prevents them
from being used for recognition of occluded objects), they fre-
quently serve as a reference method for evaluation of the per-
formance of other shape descriptors. Despite of large amount of
effort and huge number of published papers, there are still open
problems to be resolved.

A. State-of-The-Art in Brief

The history of moment invariants begun in the 19th century,
many years before the appearance of the first computers, under
the framework of the theory of algebraic invariants. The theory
of algebraic invariants probably originate from the famous
German mathematician David Hilbert [1] and was thoroughly
studied also in [2], [3].

Moment invariants were firstly introduced to the pattern
recognition community in 1962 by Hu [4], who employed the
results of the theory of algebraic invariants and derived his
seven famous invariants to in-plane rotation of 2-D objects and
further studied in classical papers [6], [5], [7]. Since that time,
numerous works have been devoted to various improvements
and generalizations of Hu’s invariants and also to its use in
many application areas.
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Dudani [8] and Belkasim [9] described their application to
aircraft silhouette recognition, Wong and Hall [10], Goshtasby
[11], and Flusser and Suk [12] employed moment invariants
in template matching and registration of satellite images,
Mukundan [13] applied them to estimate the position and the
attitude of the object in 3-D space, Sluzek [14] proposed to
use local moment invariants in industrial quality inspection and
many other authors used moment invariants for character recog-
nition [9], [15]–[18]. Maitra [19] and Hupkens [20] made them
invariant also to contrast changes, Wang [21] proposed illumi-
nation invariants particularly suitable for texture classification.
Li [22] and Wong [23] presented the systems of invariants
up to the orders nine and five, respectively. Lin and Tianxu
[24] published another technique how to derive higher-order
moment invariants. Unfortunately, the invariant sets presented
in their papers are algebraically dependent. Flusser [25], [26]
proposed a unified method how to derive independent sets of
rotation invariants of any orders and proved that the original
Hu’s invariants are dependent and incomplete.

The aforementioned papers dealt with invariants to transla-
tion, rotation, and scaling (TRS). In addition to them, there have
been numerous papers on moment invariants to affine and pro-
jective transforms, to photometric (color) changes and to linear
filtering of an image. Other groups of papers have dealt with
reconstruction power of moments, with their numerical proper-
ties, and also with moments with respect to special orthogonal
polynomials. However, these aspects of moment invariants are
not the topics of this paper, so we do not cite particular refer-
ences.

B. Topic of This Paper

As many authors have pointed out, objects having certain de-
gree of symmetry may cause problems in moment-based recog-
nition systems. The reason is that many moments and, conse-
quently, many moment invariants vanish for symmetric objects.
For example, all odd-order moments of a centrosymmetric ob-
ject equal identically zero.

The goal of this paper is to develop TRS moment invari-
ants which are particularly suitable for objects having -fold
rotation symmetry. This is very important when recognizing
man-made objects and natural shapes. To achieve this, we sub-
stantially generalize our recent theory published in [25] and
[26], taking into account -fold symmetric objects for arbitrary

including infinity.
The rest of the paper is organized as follows. In Section II,

we briefly recall the derivation of TRS invariants from complex
moments, introduced in [25] and [26]. Section III performs the
core of the paper. We generalize the construction of the invariant
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basis to make it suitable for recognition of symmetric objects.
Numerical experiments on both artificial as well as real data are
presented in Section IV.

II. DERIVING ROTATION INVARIANTS BY

MEANS OF COMPLEX MOMENTS

There are various approaches to theoretical derivation
of moment-based rotation invariants. One can employ the
theory of algebraic invariants, Lie groups, tensor calculus,
Fourier–Mellin transform, Zernike orthogonal polynomials, or
properties of trigonometric functions. In this paper, we use a
scheme which is based on complex moments. The idea of using
complex moments for deriving invariants was firstly proposed
by Mostafa and Psaltis [27] and finalized by Flusser [25]. In
comparison with other approaches, this one is more transparent
and allows to study mutual dependence/independence of the
invariants in a readable way. However, it should be noted that
all the above approaches differ from each other formally by
mathematical tools and notation used but the general idea
behind them is common and the results are similar or even
equivalent.

Complex moment of order of an integrable image
function is defined as

(1)

where denotes imaginary unit. Each complex moment can be
expressed in terms of geometric moments as

(2)

where geometric moments are defined as

(3)

and vice versa

(4)

It follows from the definition that only the indexes
are meaningful when dealing with complex moments because

(the asterisk denotes complex conjugate).
In polar coordinates, (1) becomes the form

(5)

Equation (5) implies rotation invariance of the moment magni-
tude while the phase is shifted by , where is the
angle of rotation. More precisely, it holds for the moment of the
rotated image

(6)

Any approach to the construction of rotation invariants must
be based on a proper kind of phase cancellation. The simplest
method proposed by many authors (see [28] for instance) is to
use the moment magnitudes themselves as the invariants. How-
ever, they do not generate a complete set of invariants. Flusser
[25] proposed to achieve phase cancellation by multiplication
of appropriate moment powers, as is explained in the following
Theorem.

Theorem 1: Let and let and be
nonnegative integers such that

Then

(7)

is invariant to rotation.
To achieve also translation and scaling invariance, we use

central coordinates in the definition of the complex moments
(1) and standard normalization by a proper power of , re-
spectively.

Theorem 1 allows us to construct an infinite number of the
invariants for any order of moments, but only few of them are
mutually independent. It was shown in [25] that there exist rel-
atively small complete and independent subset called basis, by
means of which all other rotation invariants can be expressed.
Such a basis is defined in Theorem 2.

Theorem 2: : Let us consider complex moments up to the
order . Let a set of rotation invariants be constructed as
follows:

where and are arbitrary indexes such that
and for all images involved. Then, is a basis

of a set of all rotation invariants created from the moments up
to the order .

The knowledge of the basis is a crucial point in all pattern
recognition tasks because the basis provides the same discrimi-
native power as the set of all invariants and minimizes the com-
putational cost.

III. RECOGNITION OF SYMMETRIC OBJECTS

If we want to recognize symmetric objects, we either cannot
apply Theorem 2 at all or many rotation invariants might be
identically zero. Let us imagine an illustrative example. We
want to recognize three shapes—square, cross, and circle—in-
dependently of their orientation. Because of symmetry, all
complex moments of the second and third orders except
are zero. If the shapes are appropriately scaled, can be the
same for all of them. Consequently, neither the Hu’s invariants
nor the invariants constructed by means of Theorem 2 provide
any discrimination power, even if the shapes are easy to rec-
ognize visually. Appropriate invariants in this case would be

, etc.
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The above simple example shows the necessity of having dif-
ferent systems of invariants for objects with different types of
symmetry. In this Section we consider so called -fold rotation
symmetry ( -FRS). An object is said to have -FRS
if it repeats itself when it rotates around its centroid by
for all . We will use this definition not only for
finite but also for . Thus, in our terminology, objects
having circular symmetry are said to
have -FRS.

Rotation symmetry of the object determines the vanishing
moments.

Lemma 1: If object has -fold rotation symmetry (
finite), then all its complex moments with noninteger
equal zero.

Proof: Let us rotate the object around its origin by .
Due to its symmetry, the rotated object must be the same as the
original. In particular, it must hold for any and .
On the other hand, it follows from (6) that

Since is assumed not to be an integer, this equation
can be fulfilled only if .

Lemma 1a: If object has -fold rotation symmetry,
then all its complex moments with equal zero.

Proof: Let us rotate the object around its origin by arbitrary
angle . The rotated object must be the same as the original
for any and, consequently, its moments cannot change under
rotation. Equation (6) implies

Since and may be arbitrary, this equation can be fulfilled
only if .

In order to derive invariants for recognition of objects with
-fold rotation symmetry, we propose the following general-

ization of Theorem 2.
Theorem 3: Let us consider a set of objects having -FRS,
finite, and their complex moments up to the order .

Let a set of rotation invariants be constructed as follows:

is integer

where and are arbitrary indexes such that
, and for all objects involved. Then, is a

basis of a set of all nontrivial invariants for objects with -FRS,
created from the moments up to the order .

Proof: Rotation invariance of all elements of follows
immediately from Theorem 1. The independence of fol-
lows from the mutual independence of the complex moments
themselves. To prove its completeness, it is sufficient to resolve
so-called inverse problem, which means recovering all complex
moments (and, consequently, all geometric moments) up to the
order when knowing the elements of .

Since is a set of rotation invariants, it does not reflect the
orientation of the object. Thus, there is one degree of freedom
when recovering the object moments which corresponds to the
choice of the object orientation. Without loss of generality, we

can choose such orientation in which is real and positive.
As can be seen from (6), if is nonzero then such orientation
always exists. Thus, the equation

can be immediately resolved for

Consequently, using the relationship , we get the
solutions

for any and such that is integer and

for the other indexes. Recovering the geometric moments is then
straightforward from (4).

Note that most invariants are complex. If we want to have
real-valued features, we only take real and imaginary parts of
each of them.

One can see that the basis defined in Theorem 3 is generally
not unique. It depends on the particular choice of and . How
shall we, in practical applications, select these indexes? On one
hand, we want to keep and as small as possible because
lower-order moments are less sensitive to noise than the higher
order ones. On the other hand, close-to-zero value of may
cause numerical instability of the invariants. Thus, we propose
the following algorithm. We start with and and
check if exceeds a predefined threshold for all objects
(in practice this means for all given training samples). If yes,
we accept this choice, otherwise we increase both and by
one and repeat the above procedure.

It may happen that, for the given set of objects and for the
given moment order , we do not find such . This may
indicate that the objects actually have higher number of folds
than .

For , which means no rotation symmetry, Theorem 3
is reduced exactly to Theorem 2. The following modification of
Theorem 3 deals with the case .

Theorem 3a: Let us consider a set of objects having -FRS
and their complex moments up to the order . Then the
basis of all nontrivial rotation invariants is

The Proof of Theorem 3a follows immediately from Theorem 1
and Lemma 1a.

Theorems 3 and 3a have several interesting consequences.
Some of them are summarized in the following Lemma.

Lemma 2: Let us denote all rotation invariants which can be
expressed by means of elements of basis as . Then, the
following holds for any order .

1) If and are finite and is their least common multiple,
then



FLUSSER AND SUK: ROTATION MOMENT INVARIANTS 3787

In particular, if is integer then .
2)

3) If is finite, the number of elements of is

where and symbol means integer part of .
For it holds

In practical pattern recognition experiments, the number of
folds may not be known a priori. In that case, we can apply
a fold detector (see [29], [30], and [31] for algorithms detecting
the number of folds) to all elements of the training set before
we choose an appropriate system of moment invariants. In case
of equal fold numbers of all classes, proper invariants can be
chosen directly according to Theorem 3 or 3a. However, it is
not realistic to meet such a simple situation in practice. Different
shape classes use to have different numbers of folds. The pre-
vious theory does not provide a solution to this problem.

As can be seen from Lemma 2, we cannot simply choose one
of the numbers of folds detected as the appropriate for con-
structing invariant basis according to Theorem 3 (although one
could intuitively expect the highest number of folds to be a good
choice, it is not that case). More sophisticated choice is to take
the least common multiple of all finite fold numbers and then to
apply Theorem 3. Unfortunately, taking the least common mul-
tiple often leads to high-order instable invariants. This is why,
in practice, one may prefer a decomposition of the problem into
two steps—first, preclassification into “groups of classes” ac-
cording to the number of folds is performed and then final clas-
sification is done by means of moment invariants, which are de-
fined separately in each group. This decomposition can be per-
formed explicitly in a separate preclassification stage or implic-
itly during the classification. The word “implicitly” here means
that the number of folds of an unknown object is not explicitly
tested, however, at the beginning we must test the numbers of
folds in the training set. Let us explain the latter version.

Let us have classes altogether such that classes have
folds of symmetry; .

The set of proper invariants can be chosen as follows.

Algorithm Select Inv

Set .
for

1) Compute the discriminability among all classes
with fold numbers by means of .
Discriminability can by defined in terms of Euclidean,
Mahalanobis, or another metric.

2) If then , where
goto

endfor

Fig. 1. Test trademarks (from left to right): Mercedes-Benz, Mitsubishi, Recy-
cling, Fischer, and Woolen Stuff.

Starting from the highest symmetry, this algorithm selects in
each loop those invariants which are able to distinguish among
objects with the fold numbers and higher, but which may
equal zero for some (or all) other objects. Note that for some

the algorithm need not to select any invariant because the
discriminability can be assured by the invariants selected before
or because .

In addition to rotation symmetry, axial symmetry appears
often in practical experiments and it also contributes to the
vanishing of some moments. There is a close connection be-
tween axial and rotation symmetry—if an object has axes
of symmetry then it is also rotationally symmetric
and is exactly its number of folds [32]. Thus, we will not
discussed the choice of invariants for axially symmetric objects
separately.

IV. NUMERICAL EXPERIMENTS

In order to illustrate how important is a careful choice of the
invariants, in particular, pattern recognition tasks, we carried out
the following experimental study.

A. Trademark Recognition

In the first experiment, we tested the capability of recognizing
objects having the same number of folds, particularly .
As a test set we used three trademarks of major companies
(Mercedes-Benz, Mitsubishi, and Fischer) and two commonly
used symbols (“recycling” and “woolen stuff”). All trademarks
were downloaded from the respective websites, resampled to
128 128 pixels and binarized. We decided to use trademarks
as the test objects because most trademarks have certain degree
of symmetry and all commercial trademark recognition systems
face the problem of symmetry. A comprehensive case study on
trademark recognition and retrieval [33] used the Hu’s moment
invariants as a preselector; here we show that Theorem 3 yields
more discriminative features.

As can be seen in Fig. 1, all our test marks have threefold ro-
tation symmetry. Each mark was rotated ten times by randomly
generated angles. Since the spatial resolution of the images was
relatively high, the discretization effect was negligible. Moment
invariants from Theorem 3 ( and ) pro-
vide an excellent discrimination power even if we take only two
simplest of them (see Fig. 2), while the invariants from Theorem
2 are not able to distinguish the marks at all (see Fig. 3).

B. Recognition of Simple Shapes

In the second experiment, we used nine simple binary pat-
terns with various numbers of folds: capitals F and L ,
rectangle and diamond , equilateral triangle and tripod

, cross , and circle and ring (see
Fig. 4). As in the previous case, each pattern was ten times ro-
tated by ten random angles.
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Fig. 2. Trademark positions in the space of two invariants c c and
Re(c c ) showing good discrimination power. : Mercedes-Benz;
}: Mitsubishi; 4: Recycling; �: Fischer; and �: Woolen Stuff.

Fig. 3. Trademark positions in the space of two invariants c c and
Re(c c ) introduced in Theorem 2. These invariants have no discrimination
power with respect to this trademark set. : Mercedes-Benz; }: Mitsubishi;
4: Recycling; �: Fischer; and �: Woolen Stuff.

First, we applied rotation invariants according to Theorem 2
choosing and . The positions of our test patterns
in the feature space are plotted in Fig. 5. Although only a 2-D
subspace showing the invariants and is vi-
sualized here, we can easily observe that the patterns form one
dense cluster around the origin (the only exception is the tripod,
which is slightly biased because of its nonsymmetry caused by
quantization effect). Two nonsymmetric objects—the letters F
and L—are far from the origin, out of the displayed area. The
only source of nonzero variance of the cluster are spatial quan-
tization errors. All other invariants of the form behave
in the same way. Thus, according to our theoretical expectation,
we cannot discriminate among symmetric objects (even if they
are very different) by means of invariants defined in Theorem 2.

Second, we employed the invariants introduced in Theorem
3 choosing (the highest finite number of folds among
the test objects), , and to resolve the above

Fig. 4. Test patterns: capital L, rectangle, equilateral triangle, circle, capital F,
diamond, tripod, cross, and ring.

Fig. 5. Space of two invariants c c and Re(c c ) introduced in The-
orem 2.�: rectangle;}: diamond;4: equilateral triangle;r: tripod; +: cross;
�: circle; and �: ring.

Fig. 6. Space of two invariants c c and Re(c c ) introduced in The-
orem 3, N = 4. �: rectangle; }: diamond; 4: equilateral triangle; r: tripod;
+: cross; �: circle; �: ring; �: capital F; and ?: capital L.

recognition experiment. The situation in the feature space looks
different from the previous case (see the plot of two simplest
invariants and in Fig. 6). Five test patterns
formed their own very compact clusters which are well sepa-
rated from each other. However, the patterns circle, ring, tri-
angle, and tripod still made a mixed cluster around the origin and
remained nonseparable. This is also fully in accordance with the
theory, because the number of folds used here is not optimal for
our test set.
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Fig. 7. Space of two invariants c c and Re(c c ) introduced in
Theorem 3,N = 12 (logarithmic scale).�: rectangle;}: diamond;4: equilat-
eral triangle;r: tripod;+: cross; �: circle; �: ring; �: capital F; and ?: capital L.

Third, we repeated this experiment again with invariants ac-
cording to Theorem 3 but selecting as the least common mul-
tiple of all finite fold numbers involved, i.e., . One can
learn from Fig. 7 that now all clusters are well separated (be-
cause of high dynamic range, logarithmic scale was used for
visualization purposes). The only exception are two patterns
having circular symmetry—the circle and the ring—that still
made a mixed cluster. If we wanted to also separate these two
patterns one from the other, we could use the invariants .
On the other hand, using only these invariants for the whole
experiment is not a good choice from the practical point of
view—since there is only one such invariant for each order, we
would be pushed into using high-order noise-sensitive moments.

Finally, we used the algorithm described at the end of Sec-
tion 3. In this case, two invariants and are suffi-
cient to separate all classes (of course, with an exception of the
circle and the ring), see Fig. 8. Comparing to the previous case,
note less correlation of the invariants, their higher robustness,
and lower dynamic range. On the other hand, neither nor

provide enough discrimination power when used individ-
ually while the twelfth-order invariants are able to distinguish all
classes.

C. Real Data Experiment

We demonstrate the performance of the invariants in object
matching task. We used a popular baby toy (see Fig. 9) which
is also commonly used in testing computer vision algorithms
and robotic systems. The toy consists of a hollow sphere having
twelve holes and of twelve objects of various shapes. Each ob-
ject matches with one particular hole. The baby (or the algo-
rithm) should assign the objects to the corresponding holes and
insert them into the sphere. The baby can employ both the color
and shape information; however, in our experiment, we disre-
garded the colors at all to make the task more difficult.

First, we took the pictures of the holes (one picture per each
hole) and we binarized them by simple thresholding. Binariza-
tion was the only preprocessing, we did not make any sphere-to-
plane corrections.

Fig. 8. Space of two invariants c c and c c .�: rectangle;}: diamond;
4: equilateral triangle;r: tripod; +: cross (it is on vertical axis close to zero);
�: circle; �: ring; �: capital F; and ?: capital L. Comparing to Fig. 7, note less
correlation of the invariants and lower dynamic range.

Fig. 9. Toy set used in the experiment.

To select proper invariants, we applied the algorithm from
Section 3 on the images of the holes. As a discriminability mea-
sure, we took weighted Euclidean distance, where the weights
were set up to normalize the dynamic range of the invariants.
As one can observe, the highest finite number of folds is 6. The
algorithm terminated after passing three loops and selected the
three following invariants: , and .

Then, we took ten pictures of each object with random ro-
tations, binarized them, and run the classification. This task is
not so easy as it might appear because the holes are a bit larger
than the objects but this relation is rather morphological than
linear and does not preserve the shapes exactly. Fortunately, all
120 unknown objects were recognized correctly and assigned to
proper holes. It should be emphasized that only three invariants
without any other information yielded 100% recognition rate for
12 classes, which is a very good result even though the shapes
are relatively simple.
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We repeated the classification once again with invariants con-
structed according to Theorem 2 setting . Only
three objects having one-fold symmetry were recognized cor-
rectly, the others were classified randomly.

V. CONCLUSION

In this paper, we proposed a new set of rotation moment
invariants designed for description and recognition of objects
having certain degree of rotation symmetry. Moment invari-
ants described earlier cannot be used for this purpose because
most moments of symmetric objects vanish. The solution to this
problem is given in Theorem 3, which is in our opinion the first
definition of rotation moment invariants for symmetric objects.
Moreover, Theorem 3 proves the independence and complete-
ness of the proposed invariants.
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